Stereoselective Synthesis of Plant-Growth-Regulating Steroids: Brassinolide, Castasterone, and Their 24,25-Substituted Analogues ${ }^{1}$

Masayoshi Tsubuki, Katsuyuki Keino and Toshio Honda*
Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan

Brassinosteroids and their congeners, brassinolide 1, castasterone 2, 25-methylbrassinolide 3, 25-methylcastasterone 4 and (24R)-24-phenylbrassinone 5, have been stereoselectively synthesized by employing the pyranone derivative 19 as a versatile intermediate for the construction of the side chain.

Since the discovery of brassinolide 1 as a plant-growthregulating substance in 1979, ${ }^{2}$ a number of brassinosteroids, such as castasterone $2,{ }^{3}$ have been isolated from plant sources. ${ }^{4}$ Much effort has been devoted to the synthesis of brassinolide and related brassinosteroids because of their novel structural features and their remarkable biological activities. ${ }^{5}$ Recently, Mori and Takeuchi synthesized a new brassinosteroid, 25methyldolichosterone, with a tert-butyl group at the C-24 position, and its derivative, 25-methylbrassinolide 3 , was found to be a plant-growth promotor more potent than brassinolide itself. ${ }^{6}$ This finding prompted us to establish a novel method for the construction of the brassinolide side chains, in which modification at the $\mathrm{C}-24$ and -25 positions could be easily achieved. Here we describe the synthesis of brassinolide 1 , castasterone 2, 25-methylbrassinolide 3, 25-methylcastasterone 4 and (24R)-24-phenylbrassinone 5.

$1 \mathrm{R}=\mathrm{H}$
$3 \mathrm{R}=\mathrm{Me}$

Results and Discussion

The key feature of our synthesis of brassinosteroid side chains is based on stereoselective conversion of the furfuryl alcohol 7, easily derived from the aldehyde 6, into the unsaturated lactone $\mathbf{8}$ followed by functionalisation of $\mathbf{8}$ with appropriate

nucleophiles and electrophiles to provide the saturated lactone 9. Lactone 9 could be easily transformed into the required side chains 10 (Scheme 1).

The requisite α, β-unsaturated lactone 19 was prepared as follows (Scheme 2). Reaction of the known aldehyde $11{ }^{\text {sd }}$ with 2-lithio-4-methylfuran $12{ }^{7}$ in tetrahydrofuran (THF) at $-78^{\circ} \mathrm{C}$ afforded the Cram product 13 as the major isomer in 58% yield together with the anti-Cram product 14 (20%). Treatment of the furfuryl alcohol 13 with N -bromosuccinimide (NBS) ${ }^{8}$ in aq. THF gave the lactol 15 , which was further oxidised with pyridinium chlorochromate (PCC) in $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$ to produce the lactone 16 in 81% overall yield from the alcohol 13. Sodium borohydride reduction of keto lactone 16 in the presence of cerium(III) chloride ${ }^{9}$ in methanol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished the allyl alcohol 17 as the sole product in 97% yield. The stereochemistry at the C-23 position was deduced by the ${ }^{1} \mathrm{H}$ NMR spectrum of the derived acetate 18 , which showed the $23-\mathrm{H}$ signal as a double doublet ($J_{22.23} 3.1, J_{23.24} 6.1 \mathrm{~Hz}$), indicating the presence of pseudoequatorial and pseudoaxial substituents at the C-22 and - 23 positions, respectively. The observed selectivity would be explained by assuming that the reduction occurred preferentially from the less hindered side
(the same side as the hydrogen at the $\mathrm{C}-22$). Protection of the alcohol 17 with ethyl vinyl ether in the presence of pyridinium toluene-p-sulfonate (PPTS) gave the ether 19 quantitatively.*

With the key intermediate 19 having the desired syn-diol system in hand, we began to explore a concise synthesis of brassinolide 1 and castasterone 2. Introduction of a methyl group into the α, β-unsaturated lactone 19 with lithium dimethylcuprate in THF afforded the adduct 20, as a $1: 1$ diastereoisomeric mixture at the acetal carbon with a single stereochemistry at the C-24 and -25 positions, in 85% yield. Since the 1,4-conjugate addition is considered to proceed in the anti sense with respect to the adjacent ether group at the C-23 position, ${ }^{10}$ the product should have the $24 S$ configuration. The structure of compound 20 was supported by the ${ }^{1} \mathrm{H}$ NMR spectrum of its acetate 21 , derived by deprotection of the ethoxyethyl group on treatment with toluene-p-sulfonic acid (PTSA) followed by acetylation of the corresponding alcohol. Acetate 21 showed an axial-equatorial coupling between the 23and $24-\mathrm{H}(J 1.8 \mathrm{~Hz})$ and a nuclear Overhauser effect between 22 H and the 24-methyl group, indicating the structure to have the $22 R, 23 R, 24 S$ configuration. Moreover, the stereochemistry at the C-25 position in the ether 20 was tentatively assigned to be S because the all-trans conformation for the δ-lactone seemed to be thermodynamically stable. The lactone moiety in structure 20, possessing four contiguous asymmetric centres, was further converted into the brassinolide side chain as follows. Reduction of compound 20 with lithium aluminium hydride (LAH) in diethyl ether gave the diol 22, whose hydroxymethyl group was converted into a methyl group by successive methanesulfonylation and reduction of ester 23 with LAH to afford compound 24 in 79% yield from compound 22. Finally, cleavage of the ethoxyethyl ether and deketalisation of compound 24 was carried out in one step on treatment with 10% hydrochloric acid at reflux to provide castasterone 2 in 94% yield. The physicochemical properties of the synthetic castasterone was identical with those reported. ${ }^{2,5 b, 5 d, 5 h}$ Since the conversion of castasterone 2 into brassinolide 1 has already been achieved by several groups, ${ }^{5 a-d}$ this constitutes its formal synthesis.

Having developed a novel method for the stereoselective construction of the brassinolide side chain, we focused our attention on the synthesis of more potent brassinosteroids, 25-methylbrassinolide 3 and 25-methylcastasterone 4 from the above intermediate 20 . Treatment of compound 20 with lithium diisopropylamide (LDA) and methyl iodide in THF afforded the lactone 25 with a geminal dimethyl group (93%), which was reduced with LAH to give the diol 26 in 84% yield. Attempted reduction of its methanesulfonate 27 with LAH gave products other than the expected compound 28. We therefore examined deoxygenation of diol 26 by Barton's method. ${ }^{11}$ Protection of the hydroxy group at the C-22 position of diol 26 was carried out by acid treatment to provide the ethylidene acetal 29 in 80% yield. Alcohol 29 was deoxygenated by reduction of the derived dithiocarbonate 30 with tributyltin hydride in refluxing toluene to afford the desired compound 31 in 66% overall yield. Deprotection of the acetonide, ketal and acetal groups in compound 31 was achieved in stepwise fashion by treatment with 10% hydrochloric acid followed by hydrolysis of the acetal 32 to furnish 25 -methylcastasterone 4 in 68% yield from compound 31. The physicochemical properties, including spectroscopic data, were identical with those reported. ${ }^{6}$ Conversion of 25 -methylcastasterone 4 into 25 -methylbrassinolide 3 has been accomplished by Mori and Takeuchi, ${ }^{6}$ and this synthesis therefore constitutes its formal synthesis.

[^0]We next applied this method to the synthesis of a new brassinosteroid derivative with a phenyl group at the C-24 position in order to gain further insight into the $\mathrm{C}-24$ substituent effect on biological activity. Reaction of the α, β unsaturated lactone 19 with lithium diphenylcuprate in diethyl ether proceeded smoothly to afford the desired compound $\mathbf{3 3}$ as the sole product in 79% yield. Conversion of the lactone moiety in compound 33 into the side chain was carried out by the same procedure as above. Thus, reduction of compound 33 with LAH, followed by acid treatment of the derived diol 34, gave the acetal 35 (64% yield in 2 steps), which was further converted into compound 37 by successive methanesulfonylation and LAH reduction of mesate 36 in 72% yield. Finally, all the protecting groups in compound 37 were removed by acid hydrolysis to furnish ($24 R$)-24-phenylbrassinone 5 in 70% yield, via the intermediate 38.

Thus, we have developed a new and useful method for the stereoselective construction of the brassinosteroid side chains; the biological activities of the synthesized compounds are under investigation.

Experimental

General Methods.-M.p.s were measured with a Yanagimoto MP apparatus and are uncorrected. IR spectra were recorded on a Hitachi $260-10$ spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained for solutions in CDCl_{3} on a JEOL PMX GSX 270 instrument, and chemical shifts are reported in ppm on the δ scale from internal $\mathrm{Me}_{4} \mathrm{Si}$. J-Values are given in Hz . Mass spectra were measured with a JEOL JMS D-300 spectrometer. Optical rotations were measured on a JASCO DIP 360 spectrometer; $[\alpha]_{D}$-values are given in units of $10^{-1} \operatorname{deg~cm}^{2} \mathrm{~g}^{-1}$.

Reaction of 2-Lithio-4-methylfuran with Aldehyde 11.-To a stirred solution of 2-lithio-4-methylfuran $12{ }^{7}$ [prepared from 2-bromo-4-methylfuran ($1.3 \mathrm{~g}, 8.07 \mathrm{mmol}$) and $\mathrm{BuLi}(1.6 \mathrm{~mol}$ $\left.\mathrm{dm}^{-3} ; 3.9 \mathrm{~cm}^{3}, 6.24 \mathrm{mmol}\right)$ in hexane] in THF $\left(4 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the aldehyde $11^{6}(1 \mathrm{~g}, 2.24$ mmol) in THF ($1 \mathrm{~cm}^{3}$). The reaction mixture was stirred for 0.5 h at the same temperature and was then allowed to warm gradually to room temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt ($7: 1, \mathrm{v} / \mathrm{v}$) as eluent to afford (20S,22S,23Z,25Z)-23,26-epoxy-6-ethylenedioxy-22-hydroxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-5 α-cholesta-23,25-diene 14 (242 mg , 20%) as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $0.82\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.7,21-\mathrm{H}_{3}\right), 1.32$ and 1.45 (each 3 H , each s, CMe_{2}), 2.01 ($3 \mathrm{H}, \mathrm{d}, J 1.2,27-\mathrm{H}_{3}$), 3.73-3.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.07-4.13 ($\left.1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right), 4.26-4.72(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 22-\mathrm{H}), 6.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 24-\mathrm{H})$ and 7.11 ($1 \mathrm{H}, \mathrm{t}, J 1.2,26-\mathrm{H}$); $m / z 528\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 528.3450$. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{6}$ requires $M, 528.3451$). The second fraction afforded (20S,22R,23Z,25Z)-23,26-epoxy-6-ethylenedioxy-22-hydroxy$2 \alpha, 3 \alpha$-isopropylidenedioxy- 5α-cholesta-23,25-diene 13 (686 mg , 58%) as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $0.84\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J 6.7,21-\mathrm{H}_{3}\right), 1.32$ and 1.48 (each 3 H , each s, CMe_{2}), 2.0 ($3 \mathrm{H}, \mathrm{d}, J 1.2,27-\mathrm{H}_{3}$), 3.73-3.97 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.08-4.13 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 4.27 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $4.3,3-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{d}, J 3.7,22-\mathrm{H}), 6.07(1 \mathrm{H}, \mathrm{br} s, 24-\mathrm{H})$ and 7.1 (1 H, d, J 1.2, 26-H); m/z $528\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 528.3457$).
(20S,22R,24Z.)-22,26-Epoxy-6-ethylenedioxy-26-hydroxy$2 \alpha, 3 \alpha$-isopropylidenedioxy- 5α-cholest-24-en-23-one 15.-To a stirred solution of the furfuryl alcohol $13(4 \mathrm{~g}, 7.58 \mathrm{mmol})$ in THF ($80 \mathrm{~cm}^{3}$)-water ($20 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ was added portionwise NBS 8 ($1.6 \mathrm{~h}, 8.99 \mathrm{mmol}$). The reaction mixture was stirred for

11

$20 R^{1}=E E, R^{2}=M e, R^{3}=H$
$21 R^{1}=A c, R^{2}=M e, R^{3}=H$
$25 R^{1}=E E, R^{2}=R^{3}=M e$
$33 R^{1}=E E, R^{2}=P h, R^{3}=H$
$17 \mathrm{R}=\mathrm{H}$
$18 R=A c$
$19 \mathrm{R}=\mathrm{EE}$

$28 \mathrm{R}=\mathrm{Me}$
$23 R^{1}=M e, R^{2}=H, R^{3}=M s$
$28 \mathrm{R}=\mathrm{Me}$
$26 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}$
$27 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ms}$
$34 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$

$29 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OH}$
$30 R^{1}=R^{2}=\mathrm{Me}, R^{3}=\mathrm{CH}_{2} \mathrm{OC}(\mathrm{S}) \mathrm{SM}$
$31 R^{1}=R^{2}=R^{3}=M e$
$35 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OH}$
$36 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{OMs}$
$37 R^{1}=P h, R^{2}=H, R^{3}=M e$

$32 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$
$38 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
$\mathrm{OEE}=\mathrm{OCH}(\mathrm{Me}) \mathrm{OEt}$

Scheme 2
0.5 h at the same temperature before being washed successively with 10% aq. potassium iodide, saturated aq. sodium thiosulfate and saturated aq. sodium hydrogen carbonate, and extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt ($5: 1$) as eluent to afford the lactol $15(3.8 \mathrm{~g}, 92 \%$) as an oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3260$ and $1660 ; \delta_{\mathrm{H}} 0.72\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83$ ($3 \mathrm{H}, \mathrm{d}, J 6.1,21-\mathrm{H}_{3}$), $0.84\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.33$ and 1.47 (each 3 H , each s, CMe_{2}), 2.02 ($3 \mathrm{H}, \mathrm{d}, J 1.2,27-\mathrm{H}_{3}$), 3.73-3.96($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.81(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{OH}), 4.08-4.16(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $4.28(1 \mathrm{H}, \mathrm{br} \mathrm{s} 3-\mathrm{H}),, 4.45(1 \mathrm{H}, \mathrm{d}, J 1.8,22-\mathrm{H}), 5.46(1 \mathrm{H}, \mathrm{d}, J 4.9$, $26-\mathrm{H}$) and $5.91(1 \mathrm{H}, \mathrm{d}, J 1.2,24-\mathrm{H}) ; m / z 544\left(\mathrm{M}^{+}\right)$(Found: M^{+}, $544.3397 . \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$ requires $M, 544.3398$).
(20S,22R,24Z)-6-Ethylenedioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy23 -oxo- 5α-cholest- 24 -eno- 26,22 -lactone 16.-To a stirred suspension of the lactol $15(1 \mathrm{~g}, 1.84 \mathrm{mmol})$ and sodium acetate ($150 \mathrm{mg}, 1.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PCC}(1.6 \mathrm{~g}$, 7.35 mmol) at room temperature and the reaction mixture was stirred for 1 h at the same temperature. After dilution with diethyl ether, the organic layer was decanted and passed through a short column chromatography on silica gel. The organic solvent was evaporated off to give a residue, which was purified by column chromatography on silica gel with hexaneAcOEt ($5: 1$) as eluent to afford the lactone $16(884 \mathrm{mg}, 89 \%)$ as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J 6.7,21-\mathrm{H}_{3}\right), 1.33$ and 1.49 (each 3 H , each s, CMe_{2}), $2.2\left(3 \mathrm{H}, \mathrm{d}, J 1.8,27-\mathrm{H}_{3}\right), 3.74-3.97(4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.08-4.13(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.9,3-$ $\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J 1.8,22-\mathrm{H})$ and $6.65(1 \mathrm{H}, \mathrm{d}, J 1.8,24-\mathrm{H}) ; m / z$ $542\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 542.3232. $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{7}$ requires M, 542.3233).
(20S,22R,23R,24Z)-6-Ethylenedioxy-23-hydroxy-2 $\alpha, 3 \alpha-$ isopropylidenedioxy-5 α-cholest-24-eno-26,22-lactone 17.-To a stirred solution of the lactone $16(883 \mathrm{mg}, 1.63 \mathrm{mmol})$ and cerium(III) chloride ${ }^{9}$ ($668 \mathrm{mg}, 1.79 \mathrm{mmol}$) in $\mathrm{MeOH}\left(9 \mathrm{~cm}^{3}\right.$)$\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added sodium borohydride (62 mg , 1.63 mmol) and the reaction mixture was stirred for 10 min at the same temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexaneAcOEt (5:1) as eluent to afford the alcohol 17 ($861 \mathrm{mg}, 97 \%$) as an amorphous solid after crystallisation from hexane-AcOEt, m.p. 278-280 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.85 ; \mathbf{H}, 9.15 . \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 8.9 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350$ and $1700 ; \delta_{\mathrm{H}} 0.72$ $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, J 6.7,21-\mathrm{H}_{3}\right)$, 1.32 and 1.48 (each 3 H , each s, CMe_{2}), 1.95 ($3 \mathrm{H}, \mathrm{d}, J 1.8$, 27- H_{3}), 3.72-3.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.08-4.13 ($2 \mathrm{H}, \mathrm{m}, 2-$ and $23-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{br}$ d, $J 4.3,3-\mathrm{H}), 4.29(1 \mathrm{H}, \mathrm{d}, J 1.8,22-\mathrm{H})$ and $6.67(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $6.1,24-\mathrm{H}) ; m / z 544\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 544.3404 . \mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7}$ requires $M, 544.3399$).
(20S,22R,23R,24Z)-23-Acetoxy-6-ethylenedioxy- $2 \alpha, 3 \alpha-$ isopropylidenedioxy-5 2 -cholest-24-eno- 26,22 -lactone 18.-A mixture of the alcohol 17 ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$), acetic anhydride ($0.5 \mathrm{~cm}^{3}$) and pyridine ($1 \mathrm{~cm}^{3}$) was stirred for 8 h at room temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (4:1) as eluent to afford the acetate $18(17 \mathrm{mg}, 94 \%)$ as an oil; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3350$ and $1700 ; \delta_{\mathrm{H}} 0.69\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83$

[^1]($3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}$), 1.18 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,21-\mathrm{H}_{3}$), 1.33 and 1.48 (each 3 H , each s, CMe_{2}), 1.97 ($3 \mathrm{H}, \mathrm{d}, J 1.8,27-\mathrm{H}_{3}$), 2.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 3.74-3.97 (4 H, m, OCH $\mathbf{O C H}_{2} \mathrm{O}$), $4.08-4.13(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.27$ ($1 \mathrm{H}, \mathrm{br}$ d, $J 4.3,3-\mathrm{H}$), 4.48 ($1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $3.1,22-\mathrm{H}$), 5.19 $(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $6.1,23-\mathrm{H})$ and $6.62(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and 6.1 , 24-H).
(20S,22R,23R,24Z)-23-(1-Ethoxyethoxy)-6-ethylenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy- 5α-cholest-24-eno-26,22-lactone 19.A solution of the alcohol 17 ($102 \mathrm{mg}, 0.19 \mathrm{mmol}$), a catalytic amount of PPTS and ethyl vinyl ether ($0.18 \mathrm{~cm}^{3}, 1.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was stirred for 2 h at room temperature. After addition of brine, the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (3:1) as eluent to afford the ether 19 ($106 \mathrm{mg}, 94 \%$) as an oily, inseparable diastereoisomeric mixture* (1:1); $\boldsymbol{v}_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}} 0.7\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.19$ and 1.2 (each 1.5 H , each $\mathrm{t}, J 6.7, \mathrm{OCH}_{2} \mathrm{Me}$), 1.2 and 1.21 (each 1.5 H , each d, $J 6.7,21-\mathrm{H}_{3}$), 1.31 and 1.32 (each 1.5 H , each d, $J 5.5$, OCHMeO), 1.31 and 1.48 (each 3 H , each s, CMe_{2}), $1.95(3 \mathrm{H}, \mathrm{d}$, J 1.2, 27-H ${ }_{3}$), 3.44-3.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}$), 3.72-3.95 ($4 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.02-4.18(2 \mathrm{H}, \mathrm{m}, 2-$ and $23-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ 4.3, 3-H), 4.37 and 4.4 (each 0.5 H , each d, $J 3.7,22-\mathrm{H}$), $4.81(1 \mathrm{H}$, $\mathrm{q}, J 5.5, \mathrm{OCH} \mathrm{MeO}$) and 6.61 and 6.66 (each 0.5 H , each dd, $J 1.8$ and $5.5,24-\mathrm{H}$); $m / z 616\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 616.3976 . \mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8}$ requires $M, 616.3975$).
(20S,22R,23R,24S,25S)-23-(1-Ethoxyethoxy)-6-ethylene-dioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy-5 -ergostano-26,22-lactone 20.-To a stirred solution of lithium dimethylcuprate [prepared from copper(I) iodide ($167 \mathrm{mg}, 0.88 \mathrm{mmol}$) and $\mathrm{MeLi}(1.5 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 1.1 \mathrm{~cm}^{3}, 1.65 \mathrm{mmol}$) in diethyl ether] in diethyl ether (3 cm^{3}) at $-10^{\circ} \mathrm{C}$ was added dropwise a solution of the unsaturated lactone 19 ($200 \mathrm{mg}, 0.33 \mathrm{mmol}$) in diethyl ether $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 1 h at the same temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (3:1) as eluent to afford the lactone $\mathbf{2 0}(174 \mathrm{mg}, 85 \%$) as an oily, inseparable diastereoisomeric mixture (1:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1700 ; \delta_{\mathrm{H}} 0.7\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.15-1.27(12 \mathrm{H}$, $\mathrm{m}, 21-, 27-$ and $28-\mathrm{H}_{3}$ and $\mathrm{OCH}_{2} \mathrm{Me}$), 1.29 and 1.3 (each 1.5 H , each d, $J 5.5, \mathrm{OCHMeO}$), 1.33 and 1.48 (each 3 H , each s, CMe_{2}), 3.44-3.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}$), 3.47 and 3.7 (each 0.5 H , each s, 23-H), 3.72-3.95 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.05-4.15(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}$), 4.15 and 4.21 (each 0.5 H , each s, 22-H), $4.26(1 \mathrm{H}$, br d, $J 4.3,3-\mathrm{H}$) and 4.72 and 4.76 (each 0.5 H , each $\mathrm{q}, J 5.5$, OCHMeO); $m / z 632\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 632.4295. $\mathrm{C}_{37} \mathrm{H}_{60} \mathrm{O}_{8}$ requires $M, 632.4282$).
(20S,22R,23R,24S,25S)-23-Acetoxy-6-ethylenedioxy-2 $2,3 \alpha-$ isopropylidenedioxy-5a-ergostano-26,22-lactone 21.-A mixture of the ether $20(30 \mathrm{mg}, 0.047 \mathrm{mmol})$ and PTSA $(9 \mathrm{mg}, 0.047$ mmol) in acetone ($3 \mathrm{~cm}^{3}$) was stirred for 1 h at $0^{\circ} \mathrm{C}$. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was used for the next reaction without purification.

A mixture of the crude alcohol, acetic anhydride $\left(0.008 \mathrm{~cm}^{3}\right)$, triethylamine ($0.007 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was stirred for 0.5 h at $0^{\circ} \mathrm{C}$. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (3:1) as eluent to afford the acetate $21(19 \mathrm{mg}, 68 \%)$ as an oil;
$v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1730 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{H}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{d}, J 6.7,21-\mathrm{H}_{3}\right), 1.2\left(3 \mathrm{H}, \mathrm{d}, J 6.7,28-\mathrm{H}_{3}\right), 1.24$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.7,27-\mathrm{H}_{3}\right), 1.33$ and 1.48 (each 3 H , each $\mathrm{s}, \mathrm{CMe}_{2}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), 3.7-4 (4 H, m, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4-4.2 (1 H, m, $2-\mathrm{H}), 4.27(2 \mathrm{H}$, br s, 3- and $22-\mathrm{H})$ and $4.81(1 \mathrm{H}, \mathrm{t}, J 1.8,23-\mathrm{H})$; $m / z 602\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 602.3817 . \mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{8}$ requires M, 602.3817).

(20S,22R,23R,24S,25S)-23-(1-Ethoxyethoxy)-6-ethylene-

 dioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy- 5α-ergostane-22,26-diol 22.To a stirred suspension of LAH ($144 \mathrm{mg}, 3.8 \mathrm{mmol}$) in diethyl ether $\left(12 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of the lactone $20(1.2$ $\mathrm{g}, 1.9 \mathrm{mmol})$ in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred for 3 h at room temperature. After addition of 20% aq. sodium hydroxide, the mixture was stirred for 0.5 h and the white precipitate was filtered off. The filtrate was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (3:1) as eluent to afford the diol $22(1.2 \mathrm{~g}, 97 \%)$ as an oily, inseparable diastereoisomeric mixture (1:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$), 0.86 and 0.88 (each 1.5 H , each d, $J 6.7,2 \times \mathrm{Me}$), 0.89 and 0.91 (each 1.5 H , each d, $J 6.7$, Me), $0.97(3 \mathrm{H}, \mathrm{d}, J 6.7$, Me), 1.24 and 1.26 (each 1.5 H , each $\mathrm{t}, J 6.7, \mathrm{OCH}_{2} \mathrm{Me}$), 1.33 and 1.48 (each 3 H , each s, CMe_{2}), 1.34 and 1.36 (each 1.5 H , each d, $J 5.5$, OCHMeO), 3.4-4.0 ($10 \mathrm{H}, \mathrm{m}, 22-$ and $23-\mathrm{H}, 26-\mathrm{H}_{2}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.03-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.27(1 \mathrm{H}$, br d, $J 4.3$, $3-\mathrm{H}$) and 4.58 and 4.88 (each 0.5 H , each $\mathrm{q}, J 5.5, \mathrm{OCH} \mathrm{MeO}$); $m / z 621\left(\mathrm{M}^{+}-15\right)$ (Found: $\mathrm{M}^{+}-15,621.4365 . \mathrm{C}_{36} \mathrm{H}_{61} \mathrm{O}_{8}$ requires $m / z 621.4365$).(20S,22R,23R,24S)-23-(1-Ethoxyethoxy)-6-ethylenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-5 α-ergostan-22-ol 24.-To a stirred solution of the alcohol $22(60 \mathrm{mg}, 0.09 \mathrm{mmol})$ and triethylamine $(10.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.6 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added dropwise methanesulfonyl chloride ($11.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and the reaction mixture was stirred for 10 min at the same temperature. After addition of brine, the product was extracted with $\mathbf{C H}_{2} \mathbf{C l}_{2}$. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give the crude mesyl ester 23, which was relatively unstable. A small sample was purified for analytical data by column chromatography on silica gel with hexane-AcOEt (4:1) as eluent to afford the mesate 23 as an oil; $\delta_{\mathrm{H}} 0.66(3 \mathrm{H}$, s, $\left.18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{d}, J 6.7$, Me), $1.01(6 \mathrm{H}, \mathrm{d}$, $J 6.7,2 \times \mathrm{Me}), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.3(3 \mathrm{H}, \mathrm{d}, J 4.9$, $\mathrm{OCHMeO}), 1.33$ and 1.48 (each 3 H , each $\mathrm{s}, \mathrm{CMe}_{2}$), $3.01(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SO}_{2} \mathrm{Me}$), 3.7-4.03 ($8 \mathrm{H}, \mathrm{m}, 22-$ and $23-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.05-4.25 (1 H, m, 2-H), $4.27(1 \mathrm{H}$, br d, $J 4.3$, $3-\mathrm{H}$) and 5.05 and 5.13 (each 0.5 H , each q, J4.9, OCH MeO). The mesyl ester 23 was used for the next reaction without purification.

To a stirred suspension of LAH ($6.2 \mathrm{mg}, \mathbf{0 . 1 6} \mathbf{~ m m o l}$) in diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ was added a solution of the mesate 23 in diethyl ether $\left(2 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 h at room temperature. After addition of 20% aq. sodium hydroxide, the mixture was stirred for 0.5 h and the white precipitate was filtered off. The filtrate was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexaneAcOEt (4:1) as eluent to afford the title compound 24 (46 mg , 79%) as an oily, inseparable diastereoisomeric mixture ($1: 1$); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$), 0.9 ($3 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{Me}$), 0.95 ($3 \mathrm{H}, \mathrm{d}, J 6.7$, Me), 1.1 (3 $\mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.31(3 \mathrm{H}, \mathrm{d}, J$ 5.5, OCHMeO), 1.33 and 1.48 (each 3 H , each s, CMe_{2}), 3.74.03 ($8 \mathrm{H}, \mathrm{m}, 22-$ and $23-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.05-4.17 (1 H, m, 2-H), 4.27 (1 H, br d, J 4.3, 3-H) and 5.03 and 5.12 (each 0.5 H , each $\mathrm{q}, J 5.5, \mathrm{OCHMMO}$); $m / z 560\left(\mathrm{M}^{+}\right.$
-60) (Found: $\mathrm{M}^{+}-60,560.4432 . \mathrm{C}_{35} \mathrm{H}_{60} \mathrm{O}_{5}$ requires m / z 560.4438).
(20S,22R,23R,24S)-2 $\alpha, 3 \alpha, 22,23-T e t r a h y d r o x y-5 \alpha-e r g o s t a n-6-$ one (Castasterone) 2.-A mixture of the ether $24(124 \mathrm{mg}, 0.2$ mmol) and 10% hydrochloric acid ($1 \mathrm{~cm}^{3}$) in THF ($2 \mathrm{~cm}^{3}$) was refluxed for 3 h . After cooling, the product was extracted with CHCl_{3}. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with AcOEt as eluent to afford the title compound $2(86.8 \mathrm{mg}, 94 \%)$ as needles, m.p. $259-260{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$) (lit., 259-261, ${ }^{3} 252-255,{ }^{5 b}$ and $\left.258-260^{\circ} \mathrm{C}^{5 d}\right),[\alpha]_{\mathrm{D}}^{25}+0.92\left[c 1.46, \mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)\right]$ $\left\{\right.$ lit., ${ }^{5 d}[\alpha]_{\mathrm{D}}^{24.5}+0.03$ (c 1.17, $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (9:1)\}. The spectroscopic data were identical with those reported. ${ }^{5 h}$
(20S,22R,23R,24S)-23-(1-Ethoxyethoxy)-6-ethylenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-25-methyl-5 α-ergostano-26,22lactone 25.-To a stirred solution of LDA [prepared from diisopropylamine $\left(0.21 \mathrm{~cm}^{3}, 1.46 \mathrm{mmol}\right)$ and $\mathrm{BuLi}(1.62 \mathrm{~mol}$ $\left.\mathrm{dm}^{-3} ; 0.75 \mathrm{~cm}^{3}, 1.22 \mathrm{mmol}\right)$ in hexane] in THF $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of the lactone 20 (308 $\mathrm{mg}, 0.49 \mathrm{mmol}$) in THF ($1 \mathrm{~cm}^{3}$). The reaction mixture was allowed to warm gradually to $-20^{\circ} \mathrm{C}$ and was then recooled to $-78^{\circ} \mathrm{C}$. Methyl iodide $\left(0.05 \mathrm{~cm}^{3}, 0.73 \mathrm{mmol}\right)$ was added dropwise to the mixture at $-78^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt $(3: 1)$ as eluent to afford the lactone 25 ($292 \mathrm{mg}, 93 \%$) as an oily, inseparable diastereoisomeric mixture $(1: 1) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}} 0.69(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.03(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}), 1.12(3 \mathrm{H}$, d, $J 6.7, \mathrm{Me}$), 1.16 and 1.32 (each 3 H , each $\mathrm{s}, \mathrm{COCMe}_{2}$), $1.2(3 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{J} 6.7, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.31(3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{OCHMeO}), 1.32$ and 1.48 (each 3 H , each s, CMe_{2}), 3.4-4 ($7 \mathrm{H}, \mathrm{m}, 23-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4.3,3-\mathrm{H})$, 4.5 and 4.56 (each 0.5 H , each d, $J 4.3,22-\mathrm{H}$) and 4.71 and 4.73 (each 3 H , each $\mathrm{q}, J 5.5, \mathrm{OCHMCO}$); m/z $646\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 646.4447. $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{O}_{8}$ requires $M, 646.4445$).
(20S,22R,23R,24S)-23-(1-Ethoxyethoxy)-6-ethylenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-25-methyl-5 α-ergostane-22,26-diol 26.-The same procedure as for the lactone 20 was applied to lactone $25(67 \mathrm{mg}, 0.1 \mathrm{mmol})$ to afford the diol $26(56.7 \mathrm{mg}, 84 \%)$ as an oily, inseparable diastereoisomeric mixture (1;1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.67$ and 0.68 (each 1.5 H , each s, $\left.18-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.85-1.3(15 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Me}$ and $\mathrm{OCH}_{2} \mathrm{Me}$), 1.33 and 1.48 (each 3 H , each s, CMe_{2}), 1.36 and 1.43 (each 1.5 H , each d, $J 5.5, \mathrm{OCHMeO}), 3.2-4(10 \mathrm{H}, \mathrm{m}, 22$ - and 23-H, 26- $\mathrm{H}_{2}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.04-4.2 (1 H, m, $2-\mathrm{H}), 4.27(1 \mathrm{H}$, br d, $J 3.7,3-\mathrm{H})$ and 4.71 and 5.02 (each 0.5 H , each $\mathrm{q}, J 5.5, \mathrm{OCHMMO}$); $m / z 635\left(\mathrm{M}^{+}-15\right)$ (Found: $\mathrm{M}^{+}$$15,635.4520 . \mathrm{C}_{37} \mathrm{H}_{63} \mathrm{O}_{8}$ requires $m / z, 635.4521$).
(20S,22R,23R,24S)-6-Ethylenedioxy-22,23-ethylidenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-25-methyl-5 α-ergostan-26-ol 29.-A solution of the ether $26(32 \mathrm{mg}, 0.049 \mathrm{mmol})$ and PTSA (3 mg , 0.016 mmol) in acetone ($2 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt $(4: 1)$ as eluent to afford the acetal $29(23 \mathrm{mg}, 80 \%)$ as an oily, inseparable diastereoisomeric mixture (4:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ / $\mathrm{cm}^{-1} 3450 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.78$ and $0.89(0.6 \mathrm{H}$ and 2.4 H , each s, Me), 0.83 and 0.93 (0.6 H and 2.4 H , each d, J 6.7, Me),
$0.84\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.89$ and $1.01(0.6 \mathrm{H}$ and 2.4 H , each d, $J 6.7$, $\mathrm{Me}), 1.03$ and $1.08(2.4 \mathrm{H}$ and 0.6 H , each $\mathrm{s}, \mathrm{Me}), 1.28$ and 1.32 (0.6 H and 2.4 H , each d, $J 4.9, \mathrm{OCHM} \mathrm{MeO}$), 1.33 and 1.48 (each 3 H , each $\mathrm{s}, \mathrm{CMe}_{2}$), 3-4.2 ($9 \mathrm{H}, \mathrm{m}, 2-$, 22- and $23-\mathrm{H}, 26-\mathrm{H}_{2}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.7,3-\mathrm{H})$ and 4.99 and $5.17(0.2$ H and 0.8 H , each $\mathrm{q}, J 4.9, \mathrm{OCHMCO}$); $m / z 604$ (M ${ }^{+}$) (Found: $\mathrm{M}^{+}, 604.4339 . \mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{7}$ requires $M, 604.4339$).

O-(20S,22R,23R,24S)-6-Ethylenedioxy-22,23-ethylidene-

 dioxy-2 $\alpha, 3 \alpha$-isopropylidenedioxy-25-methyl-5 α-ergostan-26-yl S-Methyl Dithiocarbonate 30.-A solution of the alcohol 29 ($150 \mathrm{mg}, 0.25 \mathrm{mmol}$), carbon disulfide $\left(2 \mathrm{~cm}^{3}, 33 \mathrm{mmol}\right)$ and 1,5-diazabicyclo[4.3.0]non-5-ene $\left(0.12 \mathrm{~cm}^{3}, 0.99 \mathrm{mmol}\right)$ in dimethylformamide (DMF) ($1 \mathrm{~cm}^{3}$) was stirred for 1 h at room temperature and methyl iodide ($2 \mathrm{~cm}^{3}, 32 \mathrm{mmol}$) was added to the mixture. The reaction mixture was stirred at the same temperature for 1 h and then poured into water. The product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt ($4: 1$) as eluent to afford the dithiocarbonate 30 [99 mg, 89% based on the consumed starting material (54 mg)] as an oil; $\delta_{\mathrm{H}} 0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.93$ and 0.96 (each 3 H , each d, $J 6.7,2 \times \mathrm{Me}), 1.02$ and 1.06 (each 3 H , each s, $2 \times \mathrm{Me}$), $1.3(3 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{OCHMeO}), 1.33$ and 1.48 $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.29$ and 4.56 [each 1 H , each d, $J 11, \mathrm{CH}_{2} \mathrm{OC}(\mathrm{S})$] and $5.11(1 \mathrm{H}, \mathrm{q}, J 4.9$, OCHMEO); $m / z 694\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 694.3944 . \mathrm{C}_{38} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{~S}_{2}$ requires $M, 694.3937$).
(20S,22R,23R,24S)-6-Ethylenedioxy-22,23-ethylidenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-25-methyl-5 α-ergostane 31.-A solution of the ester $30(200 \mathrm{mg}, 0.29 \mathrm{mmol})$, a catalytic amount of azoisobutyronitrile (AIBN) and tributyltin hydride $\left(0.16 \mathrm{~cm}^{3}\right.$, 0.58 mmol) in toluene $\left(16 \mathrm{~cm}^{3}\right)$ was heated for 0.5 h . Evaporation of the solvent gave a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (5:1) as eluent to afford the title compound 31 ($126 \mathrm{mg}, 74 \%$) as an oily, inseparable diastereoisomeric mixture ($1: 1$); $\delta_{\mathrm{H}} 0.67$ and 0.74 (each 1.5 H , each $\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.84$ and 0.88 (each 1.5 H , each d$, J 6.7, \mathrm{Me}$), 0.91 and 0.93 (each 4.5 H , each $\mathrm{s}, \mathrm{CMe}_{3}$), 0.92 ($3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}$), 1.3 and 1.34 (each 1.5 H , each d, J 4.9, ОСН MeO), 1.32 and 1.48 (each 3 H , each s, CMe_{2}), 3.6-4.2 ($7 \mathrm{H}, \mathrm{m}, 2$-, 22- and 23-H and $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.27 $(1 \mathrm{H}$, br d, $J 3.7,3-\mathrm{H}$) and 4.72 and 5.12 (each 0.5 H , each $\mathrm{q}, J 4.9$, OCHMeO); $m / z 588\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 588.4385 . \mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{6}$ requires $M, 588.4387$).
(20S,22R,23R,24S)-22,23-Ethylidenedioxy- $2 \alpha, 3 \alpha$-dihydroxy-25-methyl-5 α-ergostan-6-one 32.-A solution of the acetal 31 (90 $\mathrm{mg}, 0.15 \mathrm{mmol}$) and 10% hydrochloric acid ($1 \mathrm{~cm}^{3}$) in THF (5 cm^{3}) was stirred at room temperature for 10 min . After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with hexane-AcOEt (1:1) as eluent to afford the title compound 32 ($62 \mathrm{mg}, 80 \%$) as an oily, inseparable diastereoisomeric mixture (1:1); $\delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.74$ and 0.76 (each 1.5 H , each $\mathrm{s}, 19-\mathrm{H}_{3}$), 0.85 and 0.89 (each 1.5 H , each d, $J 6.7, \mathrm{Me}$), 0.91 and 0.93 (each 4.5 H , each $\mathrm{s}, \mathrm{CMe}_{3}$), 0.93 and 1.02 (each 1.5 H , each d, $J 6.1, \mathrm{Me}$), 1.31 and 1.35 (each 1.5 H , each d, $J 4.9, \mathrm{OCH} M e \mathrm{O}$), 3.68 and 4.02 (each 1 H , each d, J 8.5, 22- and $23-\mathrm{H}), 3.7-3.9(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$ and $4.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H})$; FAB $m / z 505\left(\mathbf{M}^{+}+1\right)$.
(20S,22R,23R,24S)-2 $\alpha, 3 \alpha, 22,23-T e t r a h y d r o x y-25-m e t h y l-$ 5a-ergostan-6-one (25-Methylcastasterone) 4.-A solution of the
acetal $32(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in AcOEt $\left(4 \mathrm{~cm}^{3}\right)$-water $\left(1 \mathrm{~cm}^{3}\right)$ was refluxed for 1 h . After cooling, the product was extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give a residue, which was purified by column chromatography on silica gel with AcOEt as eluent to afford the tetraol $4(16 \mathrm{mg}, 84 \%)$ as needles, m.p. $249-250^{\circ} \mathrm{C}$ (from MeOH) (lit., ${ }^{6} 251-253{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{29}+13.4(c 0.24, \mathrm{MeOH})$ $\left\{\right.$ lit., $\left.{ }^{6}[\alpha]_{\mathrm{D}}^{22}+14.3(c 0.11, \mathrm{MeOH})\right\}$. The spectroscopic data were identical with those reported. ${ }^{6}$
(20S,22R,23R,24R,25S)-23-(1-Ethoxyethoxy)-6-ethylene-dioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy-24-phenyl-5 α-cholestano-26,22-lactone 33.-To a stirred solution of lithium diphenylcuprate [prepared from copper(i) iodide ($417 \mathrm{mg}, 2.2 \mathrm{mmol}$) and PhLi ($1.76 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2.3 \mathrm{~cm}^{3}, 4.06 \mathrm{mmol}$) in diethyl ether] in diethyl ether ($5 \mathrm{~cm}^{3}$) was added dropwise a solution of the unsaturated lactone 19 ($500 \mathrm{mg}, 0.81 \mathrm{mmol}$) in diethyl ether (5 cm^{3}) at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature. After addition of brine, the product was extracted with AcOEt. The organic layer was washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated to give a residue, which was purified by column chromatography on silica gel with hexaneAcOEt (5:1) as eluent to afford the lactone 33 ($442 \mathrm{mg}, 79 \%$) as an oily, inseparable diastereoisomeric mixture (1:1); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1700 ; \delta_{\mathrm{H}} 0.57\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.8(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$), 1.2 and 1.22 (each 3 H , each d, $J 6.7,21$ - and $27-\mathrm{H}_{3}$), 1.3 and 1.32 (each 1.5 H , each $\mathrm{t}, \mathrm{J} 6.7, \mathrm{OCH}_{2} \mathrm{Me}$), 1.32 and 1.48 (each 3 H , each $\mathrm{s}, \mathrm{CMe}_{2}$), 1.41 and 1.42 (each 1.5 H , each d, J4.9, OCHMeO), 3.2-4.0 ($8 \mathrm{H}, \mathrm{m}, 23-\mathrm{and} 24-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.0-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.3,3-\mathrm{H})$, 4.35 and 4.39 (each 0.5 H , each d, $J 2.4,22-\mathrm{H}), 4.85$ and 5.02 (each 0.5 H , each q, $J 4.9, \mathrm{OCH} \mathrm{MeO}$) and $7.1-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $m / z 694\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 694.4435 . \mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{8}$ requires M, 694.4442).
(20S,22R,23R,24R,25S)-23-(1-Ethoxyethoxy)-6-ethylene-dioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy- 24 -phenyl- 5α-cholestane-
22,26-diol 34.-The same procedure as for the lactone 20 was applied to lactone $33(282 \mathrm{mg}, 0.41 \mathrm{mmol})$ to afford the diol 34 ($256 \mathrm{mg}, 90 \%$) as an oily, inseparable diastereoisomeric mixture (1:1); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 ; \delta_{\mathrm{H}} 0.61$ and 0.66 (each 1.5 H , each $\mathrm{s}, 18-\mathrm{H}_{3}$), 0.82 and 0.83 (each 1.5 H , each $\mathrm{s}, 19-\mathrm{H}_{3}$), 0.92 and 0.94 (each 1.5 H , each d, $J 6.7$, Me), 1.18 and 1.19 (each 1.5 H , each d, $J 6.7, \mathrm{Me}$), 1.25 and 1.26 (each 1.5 H , each $\mathrm{t}, J 6.7$, $\mathrm{OCH}_{2} \mathrm{Me}$), 1.32 and 1.47 (each 3 H , each s, CMe_{2}), 1.43 and 1.49 (each 1.5 H , each d, $J 5.5, \mathrm{OCHMeO}), 3-4(10 \mathrm{H}, \mathrm{m}, 22$ - and 23-H, 26-H2, $\mathrm{OCH}_{2} \mathrm{Me}$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $4.26(1 \mathrm{H}$, br s, 3-H), 4.75 and 5.01 (each 0.5 H , each $\mathrm{q}, J 5.5$, OCHMOO) and $7.1-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 683\left(\mathrm{M}^{+}-15\right)$ (Found: $\mathrm{M}^{+}-15,683.4519 . \mathrm{C}_{41} \mathrm{H}_{63} \mathrm{O}_{8}$ requires $m / z 683.4521$).
(20S,22R,23R,24R,25S)-6-Ethylenedioxy-22,23-ethylidene-dioxy- $2 \alpha, 3 \alpha$-isopropylidenedioxy-24-phenyl-5 α-cholestan-26-ol 35.-The same procedure as for the ethoxyethyl ether 26 was applied to compound $34(190 \mathrm{mg}, 0.27 \mathrm{mmol})$ to afford the acetal $35(126 \mathrm{mg}, 71 \%)$ as a single oily isomer; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3420 ; \delta_{\mathrm{H}} 0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.99$ ($3 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{Me}$), $1.15(3 \mathrm{H}, \mathrm{d}, J 7.3$, Me), 1.24 ($3 \mathrm{H}, \mathrm{d}, J 4.9$, OCHMeO), 1.31 and 1.46 (each 3 H , each s, CMe_{2}), 3.2 and 3.44 (each 1 H , each dd, $J 4.3$ and $\left.11, \mathrm{CH}_{2} \mathrm{OH}\right), 3.36(1 \mathrm{H}, \mathrm{d}, J 7.9$, $22-\mathrm{H}), 3.6-4\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4-4.2(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.2(1$ $\mathrm{H}, \mathrm{dd}, J 2.4$ and $7.9,23-\mathrm{H}), 4.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{q}, J$ 4.9, OCH MeO) and 7.25-7.3 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z 637\left(\mathrm{M}^{+}-15\right)$ (Found: $\mathrm{M}^{+}-15,637.4096 . \mathrm{C}_{39} \mathrm{H}_{57} \mathrm{O}_{7}$ requires $m / z 637.4102$).
(20S,22R,23R,24R)-6-Ethylenedioxy-22,23-ethylidenedioxy$2 \alpha, 3 \alpha$-isopropylidenedioxy-24-phenyl-5 α-cholestane 37.-The same procedure as for the alcohol 22 was applied to compound
$35(112 \mathrm{mg}, 0.17 \mathrm{mmol})$ to afford the title compound $37(78.7 \mathrm{mg}$, 72%), via the mesate 36, as an oil; $\delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.71$ ($3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}$), $0.83\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right.$), 1.0 and 1.11 (each 3 H , each d, J6.7, $2 \times \mathrm{Me}$), $1.22(3 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{OCHMeO}), 1.32$ and 1.47 (each 3 H , each s, CMe_{2}), $3.38(1 \mathrm{H}, \mathrm{d}, J 7.9,22-\mathrm{H}), 3.6-4.0$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.0-4.2 (1 H, m, 2-H), 4.2-4.3 (2 H, m, 3- and $23-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{q}, J 4.9, \mathrm{OCH} \mathrm{MeO})$ and $7.1-7.3(5 \mathrm{H}, \mathrm{m}$, Ph); $m / z 636\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 636.4393 . \mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{6}$ requires M, 636.4390).
(20S,22R,23R,24R)-22,23-Ethylidenedioxy- $2 \alpha, 3 \alpha$-dihydroxy-24-phenyl-5 α-cholestan-6-one 38.-The same procedure as for the acetal 31 was applied to compound 37 ($75 \mathrm{mg}, 0.12 \mathrm{mmol}$) to afford the title compound $38(58 \mathrm{mg}, 89 \%)$ as an oil; $\delta_{\mathrm{H}} 0.67(3 \mathrm{H}$, $\mathrm{s}, 18-\mathrm{H}_{3}$), $0.71(3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}), 0.71\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.02$ and 1.11 (each 3 H , each d, $J 6.7,2 \times \mathrm{Me}$), $1.23(3 \mathrm{H}, \mathrm{d}, J 4.9$, ОСНМeО), $2.66(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and 9.8, $5-\mathrm{H}), 3.38(1 \mathrm{H}, \mathrm{d}, J 7.9$, $22-\mathrm{H}), 3.6-3.8(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.5,3-\mathrm{H}), 4.22$ (1 H , dd, $J 2.5$ and $7.9,23-\mathrm{H}$), $5.13(1 \mathrm{H}, \mathrm{q}, J 4.9, \mathrm{OCH} \mathrm{MeO})$ and $7.2-7.3$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); m/z 552 (M ${ }^{+}$) (Found: $\mathrm{M}^{+}, 552.3814$. $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{5}$ requires $M, 552.3814$).
(20S, 22R,23R,24R)-2 $\alpha, 3 \alpha, 22,23-T e t r a h y d r o x y-24-p h e n y l-5 \alpha-$ cholestan-6-one (24-Phenylbrassinone) 5.-The same procedure as for the acetal 32 was applied to compound $38(39 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ to afford the title compound $5(29 \mathrm{mg}, 78 \%)$ as plates, m.p. $134-135^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 71.5 ; \mathrm{H}, 9.65 . \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{5}$. $1.5 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 71.6 ; \mathrm{H}, 9.35 \%\right) ;[\alpha]_{\mathrm{D}}^{28}+4.32\left(c 0.53, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3580$ and $1705 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.68$ ($3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}$), $0.75\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.94$ and 1.13 (each 3 H , each d, $J 6.7,2 \times \mathrm{Me}), 2.65(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $12.2,5-\mathrm{H}), 3.09$ $(1 \mathrm{H}, \mathrm{d}, J 7.9,22-\mathrm{H}), 3.6-3.8(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $7.9,23-\mathrm{H}), 4.04(1 \mathrm{H}, \mathrm{d}, J 2.4,3-\mathrm{H})$ and $7.2-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; FAB $m / z 527\left(\mathrm{M}^{+}+1\right)$.

References

1 A preliminary account of some of this work has been published; T. Honda, K. Keino and M. Tsubuki, J. Chem. Soc., Chem. Commun., 1990, 650.
2 M. D. Grove, G. F. Spencer, W. R. Rohwedder, N. Mandava, J. F. Worley, J. D. Warthen, Jr., G. L. Steffens, J. L. Flippen-Anderson and J. C. Cook, Jr., Nature, 1979, 281, 216.

3 T. Yokota, M. Arima and N. Takahashi, Tetrahedron Lett., 1982, 23, 1275.

4 Reviews; S. C. Chen, Chem. Can., 1983, 35, 13; T. Yokota and N. Takahashi, in Plant Growth Substances 1985, ed. M. Boop, SpringerVerlag, Berlin/Heidelberg, 1986, 129; T. Yokota, Syokubutsu no Kagakutyousetsu, 1987, 22, 10 (Chem. Abstr., 1988, 108, 3474/E); N. B. Mandava, Annu. Rev. Plant Physiol. Mol. Biol., 1988, 39, 23.

5 (a) S. Fung and J. B. Siddall, J. Am. Chem. Soc., 1980, 102, 6580; (b) M. Anastasia, P. Ciuffreda, M. Del Puppo and A. Fiecchi, J. Chem. Soc., Perkin Trans. 1, 1983, 383; (c) S. Takatsuto, N. Yazawa, M. Ishiguro, M. Morisaki and N. Ikekawa, J. Chem. Soc., Perkin Trans. 1, 1984, 139; (d) K. Mori, M. Sakakibara and K. Okada, Tetrahedron, 1984, 40, 1767; (e) J. R. Donaubauer, A. M. Geaun and T. C. McMorris, J. Org. Chem., 1984, 49, 2833; (f) T. Kametani, T. Katoh, M. Tsubuki and T. Honda, J. Am. Chem. Soc., 1986, 108, 7055; (g) T. Kametani, M. Kigawa, M. Tsubuki and T. Honda, J. Chem. Soc., Perkin Trans. 1, 1988, 1503; (h) T. Kametani, T. Katoh, J. Fujio, I. Nogiwa, M. Tsubuki and T. Honda, J. Org. Chem., 1988, 53, 1982; (i) Z. Wei-Shan, B. Jiang and X.-F. Pan, J. Chem. Soc., Chem. Commun., 1989, 612; (j) W. S. Zhou, B. Jiang and X.-F. Pan, Tetrahedron, 1990, 46, 3173; (k) T. G. Back and M. V. Krishna, J. Org. Chem., 1991, 56, 454; (l) W.S. Zhou, L. F. Huang, L. Q. Sun and X.-F. Pan, Tetrahedron Lett., 1991, 32, 6745.

6 K. Mori and T. Takeuchi, Liebigs Ann. Chem., 1988, 815.
7 D. W. Knight and D. C. Rustidge, J. Chem. Soc., Perkin Trans. 1, 1981, 679.
8 M. P. Georgiadis and E. A. Couladouros, J. Org. Chem., 1986, 51, 2725.

9 J. L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
10 T. Kametani, K. Keino, M. Kigawa, M. Tsubuki and T. Honda, Tetrahedron Lett., 1989, 30, 3141.
11 D. H. R. Barton, W. B. Motherwell and A. Stange, Synthesis, 1981, 743.

Acknowledgements

We thank Mrs. T. Ogata, Mrs. M. Yuyama and Miss Y. Takahashi, Hoshi University, for spectral measurements.

Paper 2/03039J
Received 8th June 1992
Accepted 25th June 1992

[^0]: * The mixture of diastereoisomeric ethers, which was epimeric at the acetal carbon of the ethoxyethyl group, was used without separation in the following reactions since the ethoxyethyl group was removed at a later stage in the synthesis.

[^1]: * See note on p. 2644.

